Integration of reticuloendotheliosis virus in most of Tanzanian fowlpox virus isolates is not attributed to imported commercial fowl pox vaccines

S. N. Masola1,2*, A. Mzula2, C. J. Kasanga2 and P. N. Wambura2

1Tanzania Livestock Research Institute, P. O. Box 202, Mwapwa, Tanzania.
2Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, P. O. Box 3019, Morogoro, Tanzania.

ABSTRACT

Aim: To investigate integration of reticuloendotheliosis virus (REV) in the Tanzanian fowlpox virus (FWPV) field isolates, and the imported commercial fowl pox vaccines currently used in the country.

Study design: Experimental.

Place and Duration of Study: Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania; between June 2012 and October 2013.

Methodology: Fifty five samples of FWPV isolates from naturally infected chickens, and two isolates of FWPV from samples of the imported commercial fowl pox vaccines were analyzed for integration of REV envelope (env) gene and REV 5′long terminal repeat (5′LTR). The study involved polymerase chain reaction (PCR) amplification of FWPV P4b gene, REV env gene, and REV 5′LTR; agarose gel electrophoresis of PCR products, purification of PCR products, sequencing of the purified PCR products, and sequence analysis using standard procedures.

Results: Out of 55 analyzed field isolates 53 (96.36%) were found to have REV inserts. Most of them [38 (69.09%)] contained both REV env gene and REV 5′LTR inserts, 10 (18.18%) contained inserts of REV env gene only, and 5 (9.09%) contained inserts of REV 5′LTR only. Two isolates (3.64%) were found to be integrated with neither REV env gene nor REV 5′LTR. None of the screened FWPV isolates from the imported commercial vaccines was found to have REV inserts. Sequence analysis revealed that genomic fragments of REV integrated in the Tanzanian FWPV isolate were closely related (99 – 100% identity) to REV sequences integrated in FWPV isolates from other countries.

Conclusion: Currently there is a heterogeneous population of FWPV in Tanzania comprising of REV-integrated FWPV strains and REV-free FWPV strains. Since strain(s) of REV-integrated FWPV are more virulent than strain(s) of REV-free FWPV, further studies on the REV-integrated Tanzania FWPV isolates aiming at obtaining the appropriate isolate for development of autogenous fowl pox vaccine are highly recommended.

Keywords: REV-integrated FWPV, REV-free FWPV, variant FWPV strains, Tanzania, PCR, sequencing, autogenous fowl pox vaccine.

*Corresponding author, e-mail: snmasola@yahoo.co.uk; Tel/Fax: +255 26 2320853
1. INTRODUCTION

Reticuloendotheliosis virus (REV) comprises a group of avian RNA viruses that belong to the genus *Gammaretrovirus*, sub-family *Orthoretrovirinae* and family *Retroviridae* [1]. Based on the replication ability in the host cells REV isolates are classified as either defective or non-defective. Defective REV refers to REV isolates which lack the ability to replicate in the cell cultures or naturally-infected host cells. Non-defective REV refers to those which can replicate in the cell cultures or naturally-infected host cells [2, 3]. The group of defective REV comprises of strain T (REV-T) [4]; a laboratory strain of REV with deletions within the genome and possesses a viral oncogene, *v-rel*, inserted at some site within the genome [2, 5]. This strain transforms haematopoietic cells and fibroblasts to tumourigenic cells in vitro [6]. REV-T causes acute reticulum cell neoplasia if experimentally infected to susceptible birds [2].

Strains that comprise the non-defective group of REV include REV strain A (REV-A), spleen necrosis virus (SNV), chick syncytial virus (CSV), and duck infectious anaemia virus (DIAV) [4]. Most field isolates of REV are non-defective [3] and have been reported to cause running disease syndrome in chickens and ducks characterized by running, bursal and thymic atrophy, enlarged peripheral nerves, abnormal feather development, proventriculitis, enteritis, anaemia, liver and spleen necrosis, cellular and humoral immunosuppression [2]. Apart from that non-defective REV cause chronic lymphoid neoplasms in chickens, ducks, geese, pheasants, quail, and turkeys [2].

Like other retroviruses non-defective REV have a simple genome that consists of four genes namely *gag*, which encodes for the synthesis of internal viral proteins which form the matrix, the capsid, and the nucleoprotein structure; *pol*, that encodes for an RNA-dependent DNA polymerase (also known as reverse transcriptase) and integrase enzymes; and *env*, which encodes for the viral envelope glycoproteins. In addition to these genes, a small gene known as *pro*, which encodes for viral protease is located within or adjacent to the *gag* gene [2, 7, 8, 9]. The structural genes (*env* and *gag*) are flanked by genomic sequences which regulate viral replication, which in the DNA provirus form the viral long terminal repeats (LTRs) that carry promoter and enhancer sequences [2].

Fowlpox virus (FWPV) is a DNA virus that belongs to the *Poxviridae* family, *Chordopoxvirinae* subfamily and genus *Avipoxvirus* [10]. FWPV and other avipoxviruses (APVs) cause pox in birds [11]. Unlike REV, FWPV have a large genome that consists of 260 genes [12].

Previous studies [9, 13, 14, 15, 16, 17, 18, 19, 20] demonstrated the integration of various genomic fragments of REV in the genomes of field strains of FWPV isolated from chickens in various countries outside the African continent. Furthermore, Singh et al. [18] demonstrated that integration of genomic fragments of REV into the FWPV genome leads to increased virulence of the later (REV-integrated FWPV). Apart from that Singh et al. [18] demonstrated that in a country where fowl pox is endemic with a heterogeneous population of FWPV consisting of REV-integrated FWPV strains and REV-free FWPV strains, appropriate autogenous fowl pox vaccine can be developed from an appropriate REV-integrated FWPV isolate after attenuating it by removing the REV provirus provided that the removal of the REV provirus from the FWPV genome does not alter immunogenicity and antigenicity of the REV-less FWPV. According to Hertig et al. [13] infection of susceptible chickens with REV-integrated FWPV may lead to dissemination of REV if a full length or near-full length REV provirus is integrated into the FWPV genome.
In the recent years incidences and prevalence of fowl pox in chickens have increased in Tanzania, characterized with high mortalities of chicks and growers [21]. Increased virulence of field strains of FWPV currently prevalent in Tanzania due to integration of genomic fragments of REV in the FWPV genomes is one of the probable attributing factors implicated to be behind the increased incidences and prevalence of fowl pox in the country.

REV is known to be a potential contaminant of fowl pox vaccine [22]. In Israel cases of a neoplastic disease were encountered in turkeys between 1966 to 1999 after vaccinating the birds against fowl pox using REV-contaminated fowl pox vaccine [14]. In the United States and Australia outbreaks of REV occurred after vaccination of chickens using REV-contaminated FWPV vaccine [8]. Currently imported commercial fowl pox vaccines are used in Tanzania for control of fowl pox in chickens and turkeys. Although to date no cases of running disease syndrome or chronic lymphoid neoplasms have been reported in domestic and/or wild birds in Tanzania, examination of the vaccines to determine their REV contamination status is important in order to make the Tanzanians (poultry keepers in particular) be certain with the safety of the vaccines. The objective of this study was to investigate integration of genomic fragments of REV in the Tanzanian FWPV field isolates, and the imported commercial fowl pox vaccines currently used in the country.

2. MATERIAL AND METHODS

2.1 Study location

DNA samples analyzed in this study were extracted from samples of chorioallantoic membrane (CAM) containing virus cultures after inoculation of 10 day-old embryonated chicken eggs with inoculums prepared from samples of cutaneous nodular lesions collected from chickens suspected to have fowl pox in Eastern Tanzania (Dar es Salaam and Morogoro regions), Central Tanzania (Dodoma region), Western Tanzania (Kigoma and Tabora regions), North-western Tanzania (Mwanza region), Northern Tanzania (Mara region) and Southern Tanzania (Mbeya and Iringa regions). Laboratory work was carried out at the Faculty of Veterinary Medicine (FVM), Sokoine University of Agriculture (SUA), Morogoro, Tanzania. The country is located in Eastern Africa between latitudes 1º - 12º South and longitudes 29º - 41º East [23, 24].

2.2 DNA samples

Fifty seven samples of genomic DNA which were confirmed to contain FWPV-specific DNA in the previous work [25] were used in this study. Fifty five samples were extracted from samples of CAM containing virus cultures after inoculation of 10 day-old embryonated chicken eggs with inoculums prepared from samples of cutaneous nodular lesions collected from chickens suspected to have fowl pox. The other two samples were extracted from CAM containing virus cultures after inoculation of 10 day-old embryonated chicken eggs with inoculums prepared from two samples of imported commercial fowl pox vaccines (each sample from a different batch).

2.3 Amplification of FWPV P4b gene, REV env gene and REV 5’LTR

Three polymerase chain reaction (PCR) assays were conducted in Takara Thermal Cycler (Takara Bio Inc., Japan) using three sets of primers (Table 1). A PCR assay amplifying a P4b gene (578 bp) of FWPV was carried out using the first set of primers, P1 and P2. The second assay was conducted to amplify an 807 bp region of REV provirus env gene using primers P3 and P4. The third set of primers, P5 and P6, was used in the third assay for amplification of REV 5’LTR (370 bp), an REV integration site in the FWPV genome.
The components of each amplification reaction were as described in the previous report [25]. The cycling parameters described previously by Masola et al. [25] were used in the first PCR assay. For the second assay the cycling parameters included initial denaturation step at 94°C for 1 minute, followed by heat denaturation at 94°C for 1 minute, primer annealing at 57°C for 2 minutes, DNA extension at 72°C for 1 minute. The final extension cycle was performed at 72°C for 6 minutes. The cycling parameters for the third assay were similar to those of the second assay except that the annealing temperature was 52°C instead of 57°C.

2.4 Agarose gel electrophoresis

Samples of PCR products were run in a 1.5% agarose gel as described earlier [25].
Table 1. Primers used in this study

<table>
<thead>
<tr>
<th>Primer specific for</th>
<th>Primer sequence (5’→3’)</th>
<th>Expected fragment size (bp)</th>
<th>Reference</th>
</tr>
</thead>
</table>
| APV P4b gene | Forward (P1): CAGCAGGTGCTAAACAAACAA
 | Reverse (P2): CGGTAGCTTAACGCCGAATA | 578 | [10, 11, 19, 20, 25, 26, 28, 29, 30] |
| REV env gene | Forward (P3): TGACCAGGC GGCAAAAACC
 | Reverse (P4): CGAAAGGAGGCTAAGACT | 807 | [16, 20] |
| REV 5’LTR | Forward (P5): ACCTATGCCTCTATTCCAC
 | Reverse (P6): CTGATGCTTGCTTTCAAC | 370 | [20] |
2.5 Purification of PCR products, sequencing of purified PCR products and sequence analysis

Two samples of PCR products, one with fragment size of 370 bp and the other with fragment size of 807 bp, were selected. The selected samples were purified followed by sequencing and assembling of sequences (forward sequence and reverse sequence) of each sample to get a consensus sequence using procedures described in the previous report [25]. Thereafter each sequence was analyzed by blasting it in the GenBank using the BLAST algorithm [20, 28].

3. RESULTS AND DISCUSSION

3.1 Results

3.1.1 Amplification of FWPV P4b gene, REV env gene and REV 5'LTR

Selected samples of genomic DNA known to contain FWPV-specific DNA were subjected to three conventional PCRs in order to amplify FWPV P4b gene, REV env gene and REV 5'LTR; followed by agarose gel electrophoresis. Integration of REV env gene and REV 5'LTR in the FWPV genome of the analyzed field isolates was indicated by migration of amplicons to approximately 807 bp and 370 bp, respectively (Fig. 1). Out of 55 field FWPV isolates screened for REV env gene and REV 5'LTR; 2 (3.64%) were found to be integrated with neither REV env gene nor REV 5'LTR, 10 (18.18%) were found to be integrated with REV env gene only, 5 (9.09%) were found to be integrated with REV 5'LTR only, and 38 (69.09%) were found to be integrated with both REV env gene and REV 5'LTR (Table 2). FWPV isolates from the two samples of fowl pox vaccine currently used in Tanzania were found to contain no inserts of REV env gene and/or REV 5'LTR.

![Agarose gel electrophoresis sample](image)

Fig. 1. Agarose gel electrophoresis of FWPV-specific and REV-specific PCRs showing migration of amplicons of REV provirus env gene (807 bp) (lanes 1, 2, and 3), FWPV P4b gene (578 bp) (lanes 4, 5, and 6) and REV provirus 5'LTR (370 bp) (lanes 7, 8 and 9). Lane M is a DNA ladder with 100-bp increments.
Table 2. REV integration in the Tanzanian FWPV isolates in various geographical locations and regions

<table>
<thead>
<tr>
<th>Geographical location</th>
<th>Region</th>
<th>Number of FWPV isolates screened for REV env gene and REV 5’LTR</th>
<th>Number of FWPV isolates integrated with REV env gene only</th>
<th>REV 5’LTR only</th>
<th>Both REV env gene and REV 5’LTR</th>
<th>Total percentage of FWPV isolates integrated with REV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Tanzania</td>
<td>Dar es Salaam</td>
<td>7</td>
<td>0 (0.00)</td>
<td>2 (28.57)</td>
<td>1 (14.29)</td>
<td>4 (57.14)</td>
</tr>
<tr>
<td>Eastern Tanzania</td>
<td>Morogoro</td>
<td>4</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td>4 (100.00)</td>
</tr>
<tr>
<td>Central Tanzania</td>
<td>Dodoma</td>
<td>10</td>
<td>0 (0.00)</td>
<td>2 (20.00)</td>
<td>0 (0.00)</td>
<td>8 (80.00)</td>
</tr>
<tr>
<td>Western Tanzania</td>
<td>Kigoma</td>
<td>3</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td>1 (33.33)</td>
<td>2 (66.67)</td>
</tr>
<tr>
<td>Western Tanzania</td>
<td>Tabora</td>
<td>2</td>
<td>0 (0.00)</td>
<td>2 (100.00)</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
</tr>
<tr>
<td>North-western Tanzania</td>
<td>Mwanza</td>
<td>8</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td>2 (25.00)</td>
<td>6 (75.00)</td>
</tr>
<tr>
<td>Northern Tanzania</td>
<td>Mara</td>
<td>4</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td>4 (100.00)</td>
</tr>
<tr>
<td>Southern Tanzania</td>
<td>Mbeya</td>
<td>14</td>
<td>1 (7.14)</td>
<td>2 (14.29)</td>
<td>1 (7.14)</td>
<td>10 (71.43)</td>
</tr>
<tr>
<td>Southern Tanzania</td>
<td>Iringa</td>
<td>3</td>
<td>1 (33.33)</td>
<td>2 (66.67)</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>55</td>
<td>2 (3.64)</td>
<td>10 (18.18)</td>
<td>5 (9.09)</td>
<td>38 (69.09)</td>
</tr>
</tbody>
</table>

Numbers in brackets are the percentage of FWPV isolates integrated or not integrated with a particular genomic fragment(s) of REV.
3.1.2 Sequence analysis

In order to analyze the obtained sequences the later were blasted in the GenBank. Blast results indicated that the sequence of a PCR product with fragment size 807 bp showed 95 – 100% identity to sequences of several REV env gene obtained in the GenBank (accession numbers GU012641, GU012645, GU012646, GU012642, GU012639, GU012638, GU222416, KC884554, KC884554, GC415647, GC415644, GC415643, GC375848, FJ439120, FJ439119, AF246698, EU246946, DQ925492, KF305089, KC884562, GU222420, M22223, AY842951, DQ227903 and X01455); and 100% identity to sequence of env gene of REV provirus integrated in a FWPV isolate (GenBank accession number AF246698).

The sequence of a PCR product with fragment size 370 bp showed 88 – 99% identity to sequences of several REV LTR obtained in the GenBank (accession numbers KF305089, GC415647, JQ804915, FJ439120, FJ439119, GC375848, FJ496333, DQ387450, JX912710, M22224, M22223, S70398, GC870289, GC870290, AY842951, KF018475, KF109431 and DQ003591) (Fig. 2); and 99 – 100% identity to sequences of LTR of REV provirus integrated in several FWPV isolates from other countries (GenBank accession numbers AY255633, AY255632, AF246698, AJ581527, KF305089, AF006065, AF006066 and HQ111429) (Fig. 3). After analysis sequences of env gene and 5’LTR of REV provirus integrated in a Tanzanian FWPV isolate were deposited in the GenBank data base under accession numbers KF225480 and KF268024, respectively.

Fig. 2. Alignment of the sequence of LTR of REV provirus integrated in the genome of a Tanzanian FWPV isolate (designated as **Tzfwpv**) with sequence of LTR of REV “strain HA1101” obtained in the GenBank (accession number KF305089) (designated as **HA1101**) showing 99% identity.
Fig. 3. Alignment of the sequence of LTR of REV provirus integrated in the genome of a Tanzanian FWPV isolate (designated as Tz fwpv) with sequence of LTR of REV provirus integrated in a FWPV "isolate HP-438[Munich]" (GenBank accession number AJ581527) (designated as HP-438[Munich]) showing 100% identity.

3.2 Discussion

In the present study analysis of the Tanzanian FWPV isolates between open reading frame (ORF) 201 and ORF 203 [9, 17] revealed integration of various genomic fragments of REV in the genome of most of the FWPV isolates. This implies that currently in Tanzania there is a heterogeneous population of FWPV circulating in the field due to integration of various genomic fragments of REV in their genome. This has led to emergence of variant strains of FWPV currently prevalent in the country, which according to Singh et al. [18] are more virulent than REV-free FWPV strain(s).

Prior to this study integration of genomic fragments of REV in the genome of field isolates of FWPV had been reported in Australia [13, 14], Croatia [19], India [20], Israel [9] and the United States [15, 16, 17, 18, 31]. The high proportion of near-full length REV integration in the genome of field isolates of FWPV observed in the present study (Table 2) is in agreement with a previous report by Biswas et al. [20].

Fowl pox is mainly controlled by vaccination of susceptible chickens or turkeys using fowl pox vaccines of FWPV- or pigeonpox virus (PGPV)-origin [32]. The findings of this study are a step toward development of autogenous fowl pox vaccine for control of fowl pox in Tanzania and other countries with populations of FWPV which are genetically and antigenically similar to FWPV strains currently prevalent in Tanzania.

Lack of genomic fragments of REV in the FWPV isolates from samples of the imported commercial fowl pox vaccines currently used in Tanzania, and demonstration of the presence of REV env gene in most (90.57%) of REV-integrated Tanzanian FWPV isolates indicated that the vaccines are not a source of the variant strains of FWPV revealed in this study. The genetic diversity of the Tanzanian FWPV revealed in the present study could be a result of recombination between field strains of FWPV and field strains of REV [33].

4. CONCLUSION

Based on the findings of this study the following conclusions are drawn:

i) Currently there is a heterogeneous population of FWPV in Tanzania comprising of REV-integrated FWPV strains and REV-free FWPV strains.

ii) The imported commercial fowl pox vaccine currently used in Tanzania is not contaminated with REV.
The increased incidences and prevalence of fowl pox currently experienced in Tanzania, characterized with high mortalities of chicks and growers, is attributed to increased virulence of variant FWPV strains due to integration of genomic fragments of REV in their genome.

Further studies on REV-integrated Tanzanian FWPV isolates, aiming at obtaining the appropriate strain (isolate) for development of appropriate autogenous fowl pox vaccine for control of fowl pox in Tanzania, and other countries with populations of FWPV which are genetically and antigenically similar to FWPV currently prevalent in Tanzania are highly recommended. This recommendation is based on the fact that strains of REV-integrated FWPV are more virulent than strains of REV-free FWPV [18].

ACKNOWLEDGEMENTS

The authors thank the Tanzania Commission for Science and Technology (COSTECH) for funding this study. Special thanks to Mr. Deogratias F. Masao of Tanzania Livestock Research Institute, Mpwapwa for his assistance during editing of some figures.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

AUTHORS’ CONTRIBUTIONS

Author SNM designed the study, did laboratory work, data editing, analysis of sequence data, literature search, and wrote the first draft of the manuscript. Author AM was involved in some laboratory work as well as in purchasing of consumables such as DNA extraction kits, primers, TBE buffer, nuclease-free water, loading dye and DNA molecular weight marker. Authors CJK and PNW read and corrected the entire manuscript. All authors read and approved the final manuscript.

REFERENCES

