Antioxidant Activity and Preservative Effect of Thyme (Thymus Schimperi R.)

GEBREHANA A. HAILEMARIAM and SHIMELIS A. EMIRE

1Bahir Dar University, School of Chemical and Food Engineering
Bahir-Dar, Ethiopia

2*Addis Ababa University, Food Engineering Program, School of Chemical and Bio-Engineering,
P.O. Box: 33381, Addis Ababa, Ethiopia

ABSTRACT

The study was conducted with the aim of evaluating antioxidant activity of Thymus Schimperi and its preservative effect on soybean oil, butter and meat. Thyme crude extract was prepared by investigating effect of ethanol concentration, extraction time and extraction temperature on its antioxidant activity. Antioxidant activity of thyme was evaluated at 0.1% concentration as compared to 0.05% α-tocopherol and none-thyme extract treated soybean oil and butter samples. The preservative effect of thyme was also studied by performing chemical and microbiological analysis on 0.1 and 0.2% thyme extract supplemented soybean oil, butter and meat for three consecutive weeks. The results indicated that, extraction parameters have significant effect (P<0.05) on thyme antioxidant activity. The best levels of extraction parameters for higher thyme antioxidant activity were 0% ethanol concentration, 3.50 hr extraction time and room temperature. In soybean oil, induction time of thyme was 3.25±0.02 hr and six day as determined by Rancimat and Schaal Oven test respectively. Thyme also has 5.28±0.08 hr induction time when evaluated on butter. Highest microbial load was obtained in controlled samples of butter and meat. Samples containing 0.2% thyme extract have lower total viable microbes, mold & yeast and enterobacteriaceae count; respectively. Based on the results, thyme extract significantly (P<0.05) improved both the microbial and oxidative stability of food samples. Thus, Thymus schimperi has potential as antioxidant activity and preservative effect when evaluated on some foods. Thyme, which is abundantly available in Ethiopia, can be used as a source of antioxidant for production of shelf-stable food products via extensive research and development activities.

Keywords: Thymus schimperi; Thyme extract; Antioxidant activity; Induction Time; Preservative effect
1. INTRODUCTION

Thyme is largely distributed in temperate zones and is uncommon in the African tropics. Ethiopia has considerably abundant Lamiaceae family herb growing at different regions and possesses a variety of the wild growing species of this family. Many species belonging to different genera of the family Lamiaceae have been reported to found in different parts of the country. The two species, *T. schimperi* Ronniger and *T. serrulatus* Hochst.ex Benth, both locally known as *Tosign*, are the endemic species represented in Ethiopia while *T. vulgaris* is a species, native to southern Europe (Asfaw et al., 2000). *Thymus schimperi* is wild growing species of thyme and comparatively well-known in Central, Eastern and Northern Ethiopia. *Thymus serrulatus* is growing in Tigray, and Bale, Shewa, Gonder and Wollo are the major growing areas of thyme in Ethiopia. Wild thyme of *T. Schimperi* is harvested and dried by people living close to the town of Dinsho and near Menz, put in plastic bags and sold to travelers on buses (Demsew, 1993).

The main uses of thyme in culinary and food processing are defined by the properties of thyme components for aroma and flavour, antioxidant and antimicrobial activities. The thymol and carvacrol, present in thyme essence, as well as the flavonoids and other polyphenols are considered to be involved in the antioxidant activity. Rosmarinic acid, hydroxycinnamic derivatives and flavonoid compounds showed important *in vitro* antioxidant activity by inhibiting iron-induced superoxide anion formation and lipid peroxidation in microsomal and mitochondrial systems. Furthermore, the thymol present in the essential oil showed *in vitro* antioxidant activity by neutralizing the DPPH (diphenyl-picrylhydrazyl) radical (Descalzo and Sancho, 2008).

Over the last few decades, a substantial body of scientific evidence is available demonstrating wide range of pharmacological and nutraceutical activities of medicinal herbs that includes antioxidant, antimicrobial, anticancer, anti-inflammatory activities (Burt, 2004). Currently, the uses of natural antioxidants are becoming very popular in food and preventive medicine due to the claims that they are safer and have disease-preventing and health promoting attributes. Spices and herbs provide foods with flavors and food-preserving power, including antiseptic and antioxidant activity (Jan and Michael, 2001).
Thymus is an aromatic plant belonging to the Lamiaceae family, used for medicinal and spice purposes almost everywhere in the world. The non-medicinal use of thyme is worthy of attention, because thyme is used in the food and aroma industries; it is widely used as culinary ingredient and it serves as a preservative for foods especially because of its antioxidant effect. Ethanol extract or essential oil of thyme has a significant rate of antifungal and antimicrobial activities with strongly inhibited lipid peroxidation and high -OH radical scavenging (Bozin et al., 2006). The major phenolic components in thyme extracts, especially thymol and carvacrol, present higher antioxidant activity than the well-known BHT (butylated hydroxytoluene) and α-tocopherol antioxidants (Kwang-geun and Shibamoto, 2002).

The antioxidative property of thyme is important in both the medicinal and non-medicinal context. Several papers show that the essential oils and extracts of thyme exhibit antioxidative property. The phenolic monoterpenes in thyme, thymol and carvacrol, are the primary compounds which contribute to the characteristic aroma of its essential oil. They are also known to inhibit lipid peroxidation. *Thymus schimperi* is rich in medicinally important constituents, thymol and carvacrol. It was found that essential oil obtained from *Thymus Schimperi* grown in Ethiopia, was rich in carvacrol (66.2%) and thymol (50%) which is responsible constituents of thyme for its antioxidant activity (Ermias et al., 1998).

Antioxidants in food are capable of delaying, retarding or preventing the development of rancidity in food or other flavour deterioration due to oxidation. Antioxidants delay the development of off-flavours by extending the induction time. Addition of antioxidants after the end of this period tends to be ineffective in retarding rancidity development. The induction time is very sensitive to small concentrations of components that shorten it; the pro-oxidants, or lengthen; antioxidants. Metal ions are the most important pro-oxidants in foods, whereas antioxidants include compounds that act by radical scavenging, metal chelating or other mechanisms (Joon and Shibamoto, 2009).

Some plant extracts have been known as antimicrobials as well as antioxidants in food systems. Thyme is the one among the potential herbs for extracting natural antioxidants. Aneta et al. (2007) reported that the major phenolic components in thyme extracts, especially thymol and carvacrol, present higher antioxidant activity than the well-known BHT and α-tocopherol.
antioxidants. Ethiopia has abundant wild thyme (*Thymus Schimperi*) to extract natural antioxidant and antimicrobial from this potential herb. Thyme leaves are used in Ethiopia extensively as spice/ additive to flavor a wide range of food and beverage products. However, antioxidant potential of this herb was not yet well fully studied and exploited properly to improve the shelf-stability of food products. Therefore, the purpose of the research work was to evaluate the total antioxidant activity of Thymus *Schimperi* extract using lipid oxidation inhibition system and determine its preservative effect on oil, butter and meat.

2. MATERIALS AND METHODS

2.1. Thyme Collection, Transportation and Storage

Thyme (*Thymus Schimperi* R.) was obtained from Tarmaber which is 180km away from Addis Ababa, Ethiopia. Both leave and flower part of thyme were manually collected and dried with sun drying system in protective and shaded way. The shade dried thyme was packed in polyethylene plastic bags and taken to Bahir Dar University, Technology Institute, Food Chemistry and Analysis Laboratory for further analyses.

2.2. Setting Extraction Parameters

The independent variables studied were: extraction solvent (ethanol) concentration of (0-97%), extraction temperature (20-40°C) and extraction time (3-4 hr) for actual variable levels. For each variable, an experimental range was adjusted based on the results of literature data (Wettasinghe and Shahidi, 1999) and the performance of preliminary experiment trials. In this study, the particle size was controlled as constant since the 420-500µm is optimal for extraction, while smaller particles may become slimy during extraction and create difficulty during filtration (Sukhdev et al., 2008).

2.3. Thyme Extract Preparation

Samples of about 10g of dried, milled, powdered and sieved thyme were extracted with 100mL of solvent. The extraction process was performed using a magnetic stirrer with hot plate. After extraction, the samples were filtered using 125 mm diameter filter paper. The solvent ethanol was separated from extracts using a rotary evaporator (Buchi Rota-vapor R-124, Switzerland) under vacuum at 45°C and then weighed to measure thyme extraction yield. The concentrated
thyme extract was stored at -18°C till its antioxidant capacity was determined. Whereas, aqueous extract of thyme was further freeze dried for antioxidant activity evaluation.

2.4. Evaluation of Thyme Antioxidant Activity

The antioxidant activity of thyme extract was determined by Rancimat (Model 743, Metrohm, Switzerland) and Schaal Oven test method to get induction time; taking soybean oil and butter as a real food model system (substrate) for lipid oxidation analysis occurs in lipid foods. The induction time for the formation of oxidative products of oxidizing substrate were measured and converted to protection factor for antioxidant activity evaluation.

In the case of natural antioxidants, higher concentrations (0.05-0.2%) are necessary because of their lower activities and presumed lower toxicity. The concentration of 0.1% was studied as it is most often used in the research as a model substance representing natural antioxidant (Frankel, 2007). Samples of thyme extracts were added to about 5.0g refined soybean oil and butter at concentration of 0.1% (w/w). For comparison, vitamin E (α-tocopherol) was added to the oil and butter at 0.05% (w/w) concentration. At the same time, soybean oil and butter samples without thyme extract were prepared as negative control to calculate the protection factor.

Three parallel treatments are filled into the reaction vessels and introduced in the heating blocks. The treatments were kept at stable temperature of 130°C and continuous air stream of 20L/hr pumped through the samples. The induction time was detected and recorded by computer fitted to the Rancimat. Antioxidant activity of thyme extract was expressed as a protection factor. The protection factor (PF) was calculated as:

\[ PF = \frac{IT_s}{IT_o} \]

According to the method described by Altolovich et al. (2002), Antioxidant activity of thyme extract was calculated by measuring induction time as independent variable.

\[ AA_t = \frac{[PF - 1]}{[AH]} \]

Where:  
ITs = The induction time of the sample (oil/butter with thyme extract) [hr]  
ITo = The induction time of control soybean oil [hr]  
AAt = Antioxidant activity of thyme extract  
[AH] = Concentration of thyme extract added to the oil or butter
Based on the calculation result, the protection factor can be interpreted in three ways:

PF=1 or if ITs = ITo, the thyme extract does not have antioxidant activity

PF<1, the thyme extract shows pro-oxidant activity

PF>1, the thyme extract shows antioxidant activity

In the Schaal oven test, about 40g of samples of refined soybean oil supplemented by 0.1% thyme extract were put in 50ml bottle and placed in a drying oven at 60°C. For comparison, both positive (α-Tocopherol at 0.05%) and negative (without thyme extract) treatments were prepared and stored in the same condition. For each treatment, the time required to reach at the targeted peroxide value of 20 mEq O₂/kg soybean oil (the point at which soybean oil become rancid and has poor quality) has been taken as induction time to evaluate thyme antioxidant activity. The peroxide value was determined based on (AOAC, 2000) using official method 965.33.

2.5. Preservative Effect of Thyme

Thyme extract was added to each test samples of meat, butter and oil at three different concentration levels; 0, 0.1and 0.2% and the samples were stored for 7, 14 and 22 days. A total of eighteen butter samples with 40g weight, were separately stored at 4°C refrigeration temperature for microbial and chemical analysis. For each analysis three butter samples were treated as blank (without thyme extract), the other six samples were prepared with 0.1% and 0.2% crude thyme extract.

For microbiological analysis of meat, three treatments were prepared with 0, 0.1 and 0.2% crude thyme extract. Each treatment has about100g of meat and stored at 4°C refrigeration temperature. In every week, about 25g sample was taken from each treatment for analysis of total aerobic viable count (N MKL, 2006), mold and yeast and pathogenic microbial count (N MKL, 2005).

Preservative effect of thyme crude extract was also studied on soybean oil and nine soybean oil samples were prepared. Each has a weight of about 40g and treated with 0, 0.1 and 0.2% crude thyme extract. The samples were stored at room temperature in dark place for three consecutive weeks. The free fatty acid value of butter and soybean oil was evaluated according to AOAC, (2000) Official method number 940.28 for each treated samples per each storage week.
2.6. Experimental Design and Data Analysis

A $2^3$ Full-Factorial Experiment Design was used to study the effect of extraction parameters on thyme antioxidant activity. Data obtained from the experiment were analyzed using Analysis of Variance (One way ANOVA) method to compare the mean value and standard deviation of each treatments at significant level of P<0.05 by JMP statistical analysis software version 5.0 and Design Expert Software Version 7.0.0.
3. RESULTS AND DISCUSSION

3.1. Effect of extraction parameters on thyme antioxidant activity and its extract yield

The results presented in Table 1 showed that the extraction solvent had significant effect (p<0.05) on thyme antioxidant activity. It was noted that the ethanol concentration had critical role in the extraction of soluble components from different natural products (Kwon et al., 2003). Thyme antioxidant activity determination with Rancimat method shows that thyme crude extract obtained by distilled water resulted in higher antioxidant activity. Extraction temperature was found to be the most significant factor affecting antioxidant activity of thyme at P < 0.05 level. Induction time was decreased with increased thyme extraction temperature. Based on the obtained result, antioxidant activity of thyme crude extract was increased proportionally with the decreasing of extraction temperature, reaching maximum values at room temperature. The loss in antioxidant capacities of plant extracts at high extraction temperature was likely due to degradation of phenolic compounds which were mobilized at low temperature (Chong and Lim, 2011).

Table 1: Effect of extraction parameters on thyme antioxidant activity

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Extraction parameters</th>
<th>Induction Time (hr)</th>
<th>Protection Factor</th>
<th>Antioxidant activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ethanol Conc. (%)</td>
<td>Temp.(°C)</td>
<td>Time(hr)</td>
<td>IT_s</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>40</td>
<td>4.0</td>
<td>2.65±0.08^d</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>20</td>
<td>3.0</td>
<td>3.92±0.25^a</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>40</td>
<td>3.0</td>
<td>3.22±0.04^b</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>40</td>
<td>4.0</td>
<td>3.09±0.18^bc</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>20</td>
<td>4.0</td>
<td>4.09±0.39^a</td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>20</td>
<td>4.0</td>
<td>2.87±0.09^cd</td>
</tr>
<tr>
<td>7</td>
<td>97</td>
<td>20</td>
<td>3.0</td>
<td>2.62±0.16^d</td>
</tr>
<tr>
<td>8</td>
<td>97</td>
<td>40</td>
<td>3.0</td>
<td>2.86±0.22^cd</td>
</tr>
<tr>
<td>9</td>
<td>48.5</td>
<td>30</td>
<td>3.5</td>
<td>3.04±0.10^bc</td>
</tr>
</tbody>
</table>

Means within the same column followed by the same letters are not significant difference at p< 0.05
All values are mean ± standard deviation. Where: IT_t is Induction Time of thyme antioxidant, IT_o Induction Time of control and AA_t is antioxidant activity of thyme.
In general, the maximum thyme antioxidant activity was achieved at extraction time of 3.5 hour. After this point, thyme antioxidant capacity was decreased. It was believed that prolonged extraction time would lead to exposure of more oxygen and thus increase the chances for occurrence of oxidation on phenolic compounds (Naczk and Shahidi, 2004).

The result of one-way ANOVA showed that the distilled water extract exhibited significantly higher total antioxidant activity (P<0.05) than that of ethanol thyme crude extract. It could be concluded that the different polarity of the extracts might contain different antioxidant constituents that demonstrated a varying reactivity in the model food substrates.

### 3.2. Evaluation of Thyme Antioxidant Activity

#### 3.2.1. Rancimat Method

Table 2 contains thyme antioxidant activity of three samples treatments of soybean oil and butter performed by rancimat method. Induction time was automatically determined by computer connected to Rancimat equipment for each treatment. Thyme extract shows an antioxidant activity (P<0.05) in both oil and butter since the protection factor of thyme extract treatment is greater than one.

<table>
<thead>
<tr>
<th>Model substrates</th>
<th>Treatments</th>
<th>Induction Time (hr)</th>
<th>Protection Factor</th>
<th>Antioxidant Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean oil</td>
<td>Oil with thyme extract</td>
<td>3.25±0.02&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.69±0.010&lt;sup&gt;b&lt;/sup&gt;</td>
<td>6.9±0.10&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>Oil with tocopherol</td>
<td>4.98±0.10&lt;sup&gt;a&lt;/sup&gt;</td>
<td>2.59±0.052&lt;sup&gt;a&lt;/sup&gt;</td>
<td>15.9±0.50&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>Oil alone /Control/</td>
<td>1.92±0.08&lt;sup&gt;c&lt;/sup&gt;</td>
<td>1.00±0.042&lt;sup&gt;c&lt;/sup&gt;</td>
<td>ND</td>
</tr>
<tr>
<td>Butter (Lame Dairy PLC)</td>
<td>Butter with thyme extract</td>
<td>5.28±0.08&lt;sup&gt;c&lt;/sup&gt;</td>
<td>1.40±0.021&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.00±0.21&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>Butter with tocopherol</td>
<td>7.12±0.06&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.88±0.015&lt;sup&gt;a&lt;/sup&gt;</td>
<td>8.80±0.30&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>Butter alone /Control/</td>
<td>3.78±0.10&lt;sup&gt;c&lt;/sup&gt;</td>
<td>1.00±0.026&lt;sup&gt;c&lt;/sup&gt;</td>
<td>ND</td>
</tr>
</tbody>
</table>

Means within the same column followed by the same letters are not significant difference at p<0.05,

All values are mean ± standard deviation.

Where :ND- Antioxidant activity of control was not detected for soybean oil and butter samples without thyme extract
The higher induction period of the soybean oil and butter with the thyme extract added, compared to the control implies the better the antioxidant activity of thyme. Thyme antioxidant was effective in maintaining stability of the oil and butter for extended time when treated samples were exposed to accelerated condition in Rancimat. But, thyme extract has low antioxidant activity compared to vitamin E (α-tocopherol) applied at 0.05% concentration as positive treatment.

### 3.2.2 Evaluation of thyme antioxidant activity in butter

Data of Induction time and protection factor were presented in Table 3 for butter samples collected from different locations. These butter samples were collected from Tarmaber, Sheno, Bahir Dar, Hirut Dairy PLC and Lame Dairy PLC. All butter samples were treated under the same way during transportation, storage and evaluation. This data table do not have antioxidant activity column since all samples were determined without addition of thyme extract. In this case, the study was intended examine thyme feed cows can provide butter enriched in antioxidants and see the selling price of these butter in the market. On market, some butter have higher selling price. This study wants to consider the perception regarding to the antioxidant content of the butter.

The cumulative antioxidant activity of thyme was also evaluated in butter, collected from Tarmaber, Sheno, Bahir Dar, Hirut dairy PLC and Lame dairy PLC to examine the quality of butter related to its antioxidant content.

#### Table 3: Antioxidant activity of butters collected from different locations as determined by Rancimat

<table>
<thead>
<tr>
<th>Locations of Butter samples taken</th>
<th>Induction Time (hr)</th>
<th>Protection Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarmaber</td>
<td>4.66±0.08&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.12±0.020&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sheno</td>
<td>3.78±0.14&lt;sup&gt;b&lt;/sup&gt;</td>
<td>0.96±0.035&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Hirut Dairy PLC</td>
<td>4.22±0.37&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>1.07±0.043&lt;sup&gt;ab&lt;/sup&gt;</td>
</tr>
<tr>
<td>Lame Dairy PLC</td>
<td>3.96±0.11&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.00±0.028&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Bahir Dar</td>
<td>2.24±0.28&lt;sup&gt;c&lt;/sup&gt;</td>
<td>0.57±0.071&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Means within the same column followed by the same letters are not significant difference at p<0.05, All values are mean ± standard deviation.
The results presented in Table 3 shows; these butter samples collected from different locations have different antioxidant content. Both Tarmaber and Hirut Dairy PLC butters exhibit higher antioxidant activity since they were obtained from cows eating thyme together with their feeds. Butter of Tarmaber has higher induction time and protection values (4.66±0.08 hr and 1.12±0.02; respectively) than butter of other locations and implies better antioxidant activity. It also has unique yellow color. This indicates that butters enrich by caroteniods, can have antioxidant. Whereas, butters taken from Sheno and Bahir Dar did not have antioxidant activity as compared to that of Tarmaber and Hirut dairy PLC butters indicated in the above table. Commonly, butter sellers give higher price for Sheno butter and sell it to customers. But, based on this study, Sheno butter was not as such quality butter enriched by antioxidant as compared to Tarmaber and Hirut dairy PLC butters which have higher antioxidant content. In 2009, Assefe Berhane reported that the antioxidant and preservative effect of thyme can be improved through animal feed ration preparation. The private company is more focused on feed production to manufacture high quality butter which might be exported to gulf countries in the near future.

### 3.2.3. Schaal oven test method

The oxidative rancidity index employed to analyze the antioxidant activity of thyme was the peroxide value. In this case, the induction time is taken as storage time which required for each treatment to reach the peroxide value of 20mEq O₂/kg soybean oil where the oil has poor quality and assumed to be rancid. From Table 4 it can be seen that the effect of thyme extract addition on the peroxide value of soybean oil stored at 60℃.
Table 4: Peroxide value for evaluating antioxidant activity of thyme using Schaal Oven test

<table>
<thead>
<tr>
<th>Storage time (day)</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>0</td>
<td>4.00±0.00&lt;sup&gt;e&lt;/sup&gt;</td>
</tr>
<tr>
<td>2</td>
<td>8.50±0.71&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>4</td>
<td>11.00±0.82&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>5</td>
<td>19.67±0.47&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>6</td>
<td>30.30±0.80&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>7</td>
<td>58.33±0.71&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Means within the same column of each treatment followed by the same letters are not significant difference at P > 0.05. All values are mean ± standard deviation.

As overall observation, the addition of thyme antioxidant retarded the formation of peroxide value of soybean oil compared to the control. Initially, the peroxide value the oil was 4.00 mEq oxygen/kg of soybean oil. From the results obtained, the peroxide value increased with storage time. The peroxide value of blank treatment significantly increased from 4.00±0.00 to 58.33±0.71 within seven day of storage time. Thyme extract containing oil samples have lower peroxide value than untreated blank samples (control).

Induction time required for reaching the targeted peroxide value of control and thyme treatments were found to be five and six days respectively. Whereas, reference antioxidant (α-Tocopherol), needs seven days. Thyme showed significantly higher antioxidant activity (P<0.05) than the negative control. Reference antioxidant exhibited stronger antioxidant activity (P<0.05) than both the control and thyme treatments. In this case, α-Tocopherol was found to be the most effective antioxidant since there was a slightly increment in peroxide value under the seven days storage time. Schaal oven test method of thyme antioxidant activity determination was not well comparable with Rancimat method. This behavior can be attributed due to the very low solubility of thyme extract in the oil. It has been previously found that antioxidant’s protecting efficacy increased when the continuous airflow facilitates emulsification (Velazco et al., 2000).
3.3. Preservative effect of thyme

3.3.1. Chemical analysis

**Free Fatty Acids:** As mentioned in Table 5, FFA value of blank treatment of soybean oil (oil without thyme extract) was found to be 0.296±0.02. After one week, the FFA value was promoted to 0.340±0.002. At the completion of three week storage time, FFA value of the control treatment of soybean oil was increased to 0.423±0.02. This change of FFA content of was significant (P<0.05) according to statistical analysis. While, 0.1% thyme extract treated soybean oil, have the free fatty acid value of 0.231±0.01 and 0.353±0.02 at the first and third week analysis respectively. Whereas, 0.2% treated refined soybean oil have the value of 0.198±0.04 and 0.284±0.21 during the 1<sup>st</sup> and 3<sup>rd</sup> week storage time.

**Table 5: Free fatty acid value of soybean oil and butter treated by thyme crude extract**

<table>
<thead>
<tr>
<th>Food Substrates</th>
<th>Storage weeks</th>
<th>Concentration of thyme crude extract (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Refined soybean oil</td>
<td>1&lt;sup&gt;st&lt;/sup&gt;</td>
<td>0.296±0.02&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>2&lt;sup&gt;nd&lt;/sup&gt;</td>
<td>0.340±0.002&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>3&lt;sup&gt;rd&lt;/sup&gt;</td>
<td>0.423±0.02&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Butter (Lame Dairy PLC)</td>
<td>1&lt;sup&gt;st&lt;/sup&gt;</td>
<td>0.353±0.02&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>2&lt;sup&gt;nd&lt;/sup&gt;</td>
<td>0.423±0.04&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>3&lt;sup&gt;rd&lt;/sup&gt;</td>
<td>0.592±0.03&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Means within the same row of food substrate and column of thyme extract concentration followed by the same letters are not significant difference at p<0.05, All values are mean ± standard deviation.

In the case of butter, at the 1<sup>st</sup> and 3<sup>rd</sup> week of storage time, the free fatty acids values of control treatment were 0.353±0.02 and 0.592±0.04 respectively. FFA value of 0.1% thyme extract treated butter was 0.31±0.04 at 1<sup>st</sup> week. After three week, its FFA value was increased to 0.453±0.01. Treatment of 0.2% thyme extract has a free fatty acid value of 0.296±0.02 and 0.403±0.01 at 1<sup>st</sup> and 3<sup>rd</sup> week of butter storage time respectively. The value of FFA, decrease with increasing thyme extract concentration across the storage week of butter. Thyme and cumin essential oils could prevent oxidation in butter stored at room temperature, and at 200ppm the essential oils were more effective than BHT in inhibiting lipid oxidation in the butter (Farag et al., 1990).
**Peroxide Value:** The peroxide value of control treatments of soybean oil was 5.20±1.13 as shown in Table 6. It was increased to 15.0±1.41 at the end of storage time. The peroxide values of 0.1% and 0.2 % thyme extract treated oil samples were changed from 4.50±0.71 to 6.50±0.71 and 5.00±1.41 to 6.00±0.00 at the 1st and 3rd week of analysis respectively. These changes were significantly indicated the noticeable phenomenon of lipid oxidation. There were statistical differences (P<0.05) among control and thyme extract treatments. One-way ANOVA analysis result, showed that refined soybean oil samples treated by 0.1 and 0.2% thyme extract have significantly lower peroxide value (P<0.05) compared to untreated blank oil sample.

### Table 6: Peroxide value of thyme extract treated with soybean oil and butter

<table>
<thead>
<tr>
<th>Food Substrates</th>
<th>Storage weeks</th>
<th>Concentration of thyme crude extract (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td><strong>Refined Soybean oil</strong></td>
<td>1st</td>
<td>5.20±0.35&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>9.50±0.61&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>15.0±0.70&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td><strong>Butter (Lame Dairy PLC)</strong></td>
<td>1st</td>
<td>3.25±0.56&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>15.0±0.72&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>21.0±0.76&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Means within the same row of food substrate and column of thyme extract concentration followed by the same letters are not significant difference at p<0.05, All values are mean ± standard deviation.

In butter, the control has higher peroxide values ranged from 3.25±1.06 to 21±1.41 at the 1st and 3rd week of storage time. Butter treated with 0.1% thyme extract has peroxide values of 1.5±0.71 and 15±1.41 during storage weeks. After the 2nd week of storage time, the result of one-way ANOVA analysis exhibited that thyme extract has significant effect (P<0.05) as compared to untreated butter sample. Both 0.1 and 0.2% thyme extract treated butter samples show lower peroxide value.

#### 3.3.2. Microbiological Analysis

**Aerobic Total Viable Count:** The results of each treatment of both butter and meat were expressed by the logarithm of colony forming units obtained by direct count of colonies on each serial dilution per ml of sample inoculated to plate count agar medium in duplicate. At all three weeks of butter cold storage, control sample showed the higher colony count comparing to other samples contained thyme extract at 0.1 and 0.2% concentrations. The value of its aerobic plate
count significantly increased during each cold storage week of butter. In Figure 1 (a), both 0.1 and 0.2% thyme extract treated butter samples showed lower value of aerobic plate count. It is quite clear that thyme extract has antimicrobial effect in preservation of butter.

![Graph](image1.png)

**Figure 1:** Aerobic Viable Count (a) butter (b) meat

In the case of meat, the colony count values of control sample were higher than other thyme extract treated samples during the first two weeks of meat cold storage time. But at the third week of meat storage, it was very difficult to count colonies grown on plate count agar medium. In meat, both concentration of thyme crude extracts (0.1 and 0.2%) significantly decreased the value of aerobic plate count as indicated in Figure 1(b).
In Figure 1 (a,b), it has been clearly seen that 0.2% thyme extract has lower count value in each cold storage week of meat. The pattern of the colony count value can be arranged as: control sample > 0.1% thyme extract > 0.2% thyme extract treated samples. These strong antimicrobial activities are mostly due to the presence of phenolic compounds such as thymol and carvacrol, and to hydrocarbons like γ-terpinene and p-cymene (Lambert et al., 2001).

Mold and Yeast Count: The values of mold and yeast count for control sample of butter were higher than thyme crude extract treated samples in all three weeks of cold storage time. The values were increased significantly during each week. As shown in Figure 2 (a), 0.1 and 0.2% thyme crude extract treated butter samples showed lower value of aerobic mold and yeast count. It is quite clear that thyme extract has antimicrobial effect against the growth of both mold and yeast in cold stored butter.

Figure 2: Mold and Yeast Count (a) butter (b) meat
Higher values of aerobic mold and yeast count were obtained in the control sample of meat during the 1\textsuperscript{st} and 2\textsuperscript{nd} weeks of cold storage time. However, its value at the 3\textsuperscript{rd} week of analysis was too difficult to count colonies grown on Potato Dextrose Agar medium. Both concentration of thyme crude extracts (0.1 and 0.2%) significantly decreased the value of aerobic mold and yeast growth count during the whole weeks of analysis. In Figure 2 (b), it has been also clearly seen that 0.2% thyme extract has lower count value in each cold storage week of meat.

Antifungal activity of three essential oils (thyme, summer savory and clove) is evaluated in culture medium and as a real system in tomato paste (\textit{in vitro} and \textit{in vivo}) and the results clearly showed that in \textit{vitro} each essential oil had notable antifungal activity (Omidbeygi \textit{et al.}, 2007).

**Enterobacteriaceae Count:** As shown in Figure 3 (a), it could be observed that control sample of butter (butter alone) had the highest counts of enterobacteriaceae at all three weeks of cold storage compared to other treatments. The count of enterobacteriaceae of butter significantly increased during each weeks of cold storage at 4\degree C. Samples of butter treated by both 0.1 and 0.2% thyme crude extract showed lower value of enterobacteriaceae.
The values for enterobacteriaceae count of control sample of meat were higher than other thyme extract treated samples during the two weeks of meat cold storage time as shown in Figure 3 (b). But, at the third week of meat storage, it was very difficult and too much to count colonies grown on plate count agar medium. Both concentration of thyme crude extracts (0.1% and 0.2%) significantly decreased the value of enterobacteriaceae count. For successful applications of thyme in different food systems, potential interaction between thyme extract and food components have to be determined.

4. CONCLUSION

It is evident from the result of this work that antioxidant activity of thyme crude extract was depend largely on the extraction parameters (solvent concentration, extraction temperature and extraction time), the kind of food substrate, concentration of the extract being used in the substrate and the method of choice for antioxidant activity test. Higher antioxidant activity of thyme was found by distilled water extraction at room temperature for 3.5 hours. Thyme and α-Tocopherol treated samples of soybean oil and butter revealed induction time of 3.25±0.02 and 4.98±0.10 hrs; respectively as determined by Rancimat. In Schaal Oven test method, they have six and seven day’s induction time in soybean oil and butter; respectively. Thyme also has 5.28±0.08 hrs induction time when it was evaluated in butter by Rancimat method.
It can be concluded that crude thyme extract contains an effective antioxidant in stabilizing refined soybean oil and butter. The study also provides an insight into understanding the behavior of adding natural antioxidants to food products resulted in enhancement on oxidative and microbial stability. Results of thyme preservative effect revealed that treatments of 0.2% thyme extract significantly improve microbial stability of soybean oil, butter and meat food products. The values of enterobacteriaceae counts decreased as the concentration of thyme extract increase with the same storage week of both meat and butter. Hence, Ethiopian thyme has acceptable antioxidant activity and preservative effect as observed on thyme extract treated food products. In conclusion, thyme crude extract has the beneficial effect in controlling the microbial load of both meat and butter during three weeks of storage at 4 °C compared with control samples.

Incessant research activities are required in order to examine the quality of meat and butter on thyme feed animals; which is the current indigenous practice of Ethiopian highland farmers. Moreover, adding thyme with tea and traditional dishes become popular in the Ethiopian context. However, blending with other plant and animal origin agricultural produces require investigation in order to maximize the available resource and the existing practices in East African courtiers. Health benefits, phytochemical composition, antioxidant potential, antimicrobial activity, efficacy of thyme extract within food products and food preservative effect to increase shelf stability of food products need further research.

ACKNOWLEDGMENTS

The funding and laboratory facility provided by Addis Ababa University (AAU) and BahirDar University are admiringly acknowledged.
REFERENCES


