In vitro Antioxidant and Anticancer Properties of Active Compounds from Methanolic Extract of *Pteris multifida* Poir. Leaves

Hoang Le Son* and Tran Huynh Phuoc Thao

1School of Biotechnology, International University-Vietnam National University, HCMC, Vietnam.

ABSTRACT

Aims: To isolate pure compounds from the methanolic fraction obtained from successive fractionation of defatted ethanolic extract and evaluate *in vitro* antioxidant and anticancer activity of the crude ethanolic extract, methanolic fraction and pure compounds isolated from methanolic fraction from leaves of *Pteris multifida* Poir.

Study design: Isolation and identification of the compounds, evaluation of antioxidant and anticancer activity on cervical cancer cell line (HeLa), lung carcinoma cell line (NCI-H460) and breast carcinoma cell line (MCF-7).

Place and Duration of Study: Institute of Chemical Technology, Vietnam Academy of Science and Technology of Ho Chi Minh City and School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, between December 2012 and September 2013.

Methodology: The crude ethanolic leaf extract and methanolic fraction obtained from successive fractionation of defatted ethanolic extract from *Pteris multifida* leaves were prepared. The isolated compounds from methanolic fraction were identified using different spectroscopic techniques. Antioxidant activity of the samples was evaluated by using the stable free radical 2, 2'-diphenyl picrylhydrazyl (DPPH). Sulforhodamine B (SRB) assay was exploited for determination of anticancer activity against three selected human cancer cell lines: HeLa, NCI-H460 and MCF-7.

Results: Two main compounds were isolated from methanolic fraction obtained from successive fractionation of defatted ethanolic extract: rutin (1) and apigenin-7-O-β-D-glucopyranoside (2). The crude ethanolic leaf extract showed weak antioxidant activity (IC$_{50}$ = 89.84 µg/mL) whereas the methanolic fraction expressed quite strong antioxidant activity (IC$_{50}$ = 21.9 µg/mL). Rutin (1) showed a good ingredient of antioxidant activity with IC$_{50}$ value of 37.70 ± 0.03 µg/mL. Crude ethanolic leaf extract had cytotoxic activity against HeLa and NCI-H460 cell lines while the methanolic fraction had cytotoxic activity against HeLa, NCI-H460 and MCF-7 cell lines. Apigenin-7-O-β-D-glucopyranoside (2) had strong anticancer activity against MCF-7 cell line with IC$_{50}$ = 22.62 ± 0.59 µg/mL.

Conclusion: The crude ethanolic leaf extract and its methanolic fraction of *P. multifida* showed the potential activity in antioxidant and anticancer activity. Rutin had a potent antioxidant activity while apigenin-7-O-β-D-glucopyranoside had a strong anticancer activity against the human breast adenocarcinoma cell line MCF-7.

Keywords: *Pteris multifida*; rutin; apigenin-7-O-β-D-glucopyranoside; antioxidant; anticancer

1. INTRODUCTION

From early until now, natural products, especially plants, have been widely used for the discovery of new therapeutic agents. These natural products used in pharmaceutical

*Corresponding author: Email: hlson@hcmiu.edu.vn;
preparation can either be crude extracts, fractions, pure compounds or analogous compounds from highly active isolated compounds. Drug discovery from plant-derived bioactive compounds have been isolated from plant sources. Several of them are currently in clinical trials or preclinical trials or undergoing further investigation [1]. In comparison to synthetic agents, plant-based products have more beneficial characteristics such as inexpensive and safety. Thus, plant species are always regarded as an important source of starting material for drug discovery.

Cancer is a main public health trouble in both developed and developing countries. The environmental, physical, chemical, metabolic and genetic factors play a direct and/or indirect role in the induction and deterioration of cancers. The limited success of clinical therapies including radiation, chemotherapy, immunomodulation and surgery in treating cancer, as evident by the high morbidity and mortality rates, indicates that there is an imperative need of new cancer management [2]. Medicinal plants maintain the health and vitality of individual and also cure various diseases including cancer without causing toxicity. Natural products discovered from medicinal plants have played an important role in treatment of cancer [3]. Thus, search in drug discovery should involve in finding new safe compounds from medicinal plants that are capable of killing cancer cells.

Pteris multifida Poir. (P. multifida) is a medicinal plant belonging to genus of Pteris of Pteridaceae family. *P. multifida* contains various flavonoids and possesses antipyretic, detoxified, antibiotic, anti-inflammatory and antimutagenic activities [4]. However, flavonoids extracted from *P. multifida* leaves have not yet been evaluated for antioxidant and anticancer activity. The purpose of this present contribution was to isolate target compounds from the methanolic fraction from the leaf extract of *P. multifida* and assay for antioxidant and anticancer activity.

2. MATERIAL AND METHODS

2.1 Reagents and equipment

Medium Pressure Liquid Chromatography was performed on CombiFlash Rf machine (USA) using silica gel (E. Merck, 230-400 mesh) column (RediSep cartridge, USA). Precoated silica gel F254 plates (Germany) were used for thin layer chromatography (TLC). Sulforhodamine B (SRB) solution, DPPH, ascorbic acid and various solvents were purchased from Merck (Germany). All reagents and solvents were of analytical grade.

The cervical cancer HeLa, lung cancer NCI-H460, and breast cancer MCF-7 cell lines were supplied from the National Cancer Institute of the United States (NCI - Frederick, MD, USA). The cells were cultured in E'MEM environment including L-glutamine (200 mM), HEPES (1M), amphotericin B (0.1%), penicillin-streptomycin 200X and 10%(v/v) FBS and incubated at 37°C with 5% CO2.

The 1H-NMR and 13C-NMR spectra (500 MHz for 1H-NMR and 125 MHz for13C-NMR) were recorded using DMSO as solvent. The structures of pure compounds were elucidated based on the distortionless enhancement by polarization transfer (DEPT), correlation spectroscopy (COSY), heteronuclear single quantum coherence (HSQC) and heteronuclear multiple-quantum correlation (HMQ).

2.2 Collection and Preparation of the Plant Materials

Fresh leaves of *P. multifida* were collected from Nghe An Province in November of Vietnam. The leaves were first rinsed thoroughly with tap water, shaded dried for 5 days. The dried
plant materials were then ground into uniform powder using an electric grinder prior to the
extraction.

2.3 Preparation of Leaf Extract and Isolation of Compounds

Plant extraction was done by cold maceration of 1.5 kg of dried leaf in 96% ethanol for one
week at room temperature with frequent stirring. The filtrate obtained was concentrated
using rotator evaporator to obtain crude ethanol extract. The crude ethanolic extract was
then defatted by using hexane to remove the chlorophyll out of the extract. The residues
were successively partitioned with pure methanol several times and removed organic solvent
using rotator evaporator affording known weight of methanolic fraction. The extracts and
fraction were stored at 4°C for further analysis.

Thirty grams of methanolic extracts was chromatographed on silica gel column (250 g) with
chloroform-methanol as the gradient eluent and then purified by preparative reverse-phase
high-performance liquid chromatography (RP-HPLC) with water-methanol as the gradient
eluent for isolation of compounds. Compound (1) rutin was isolated from fraction 5 (5:5) and
(2) apigenin-7-O-β-D-glucopyranoside was isolated from fraction 7 (3:7).

2.4 Biological Studies

The crude ethanolic leaf extract, methanolic fraction and pure compounds were in vitro
tested for their antioxidant and anticancer activities.

2.4.1 Antioxidant activity

It is essential to select and employ a stable and rapid method to assay antioxidant activity,
because the determination of many samples is time consuming. In this work, 2,2-diphenyl
picrylhydrazyl (DPPH) assay was used for the evaluation of antioxidant activity of crude
ethanolic extract, methanolic fraction and pure compounds.

The DPPH assay was performed as described by Ghawi et al. (2012) [5] with minor
modification. This method depends on the reduction of purple DPPH radicals to a pale
yellow colored diphenyl picrylhydrazine and the remaining DPPH radicals which showed
maximum absorption at 517 nm was measured.

Fifty micro liters of various concentrations of each sample was added to 150 µL of a 250 µM
solution of DPPH in methanol. Controls with 50 µL of DMSO without the extract were also
prepared under the same condition for all experiments. Ascorbic acid was served as positive
control with concentration between 5 - 100 μg/mL. After 30 minute incubation in the dark at
room temperature, the absorbance was measured at 517 nm. The experiment was
performed in triplicates. The percentage of inhibition (%) of DPPH radical was calculated
according to the following equation:

\[
\text{% Inhibition} = \left(\frac{\text{Abs of control} - \text{Abs of sample}}{\text{Abs of control}}\right) \times 100\%
\]

The IC\(_{50}\) was determined as the concentration of the sample required to inhibit the free
radical by 50%.

2.4.2 Anticancer activity

Crude ethanolic extract, methanolic fraction and pure compounds were investigated in vitro
towards three kinds of human cancer cell lines: cervical cancer cell line (HeLa), lung
carcinoma cell line (NCI-H460) and breast carcinoma cell line (MCF-7) using method
described by Sivakumar et al. (2008) [6] with minor modification. This is a colorimetric assay
estimates cell number indirectly by staining total cellular protein with the dye sulforhodamine-
B (SRB). This dye is a bright pink aminoxanthrene dye with two sulfonic groups. It is a
protein stain that binds to the amino groups of intracellular proteins under mildly acidic
conditions to provide a sensitive index of cellular protein content. Cells were cultured in the
media to the sub-culture of fourth generation and seeded in 96-well microplates at a density
of 1×10^4 cells/well (HeLa and MCF-7 cell line) and 7.5×10^3 cells/well (NCI-H460 cell line).
The plates were incubated at 37°C for 24 h in 5% CO2 atmosphere and the duplicate
concentration cultured-media containing test samples was then added in the plates without
removing the initial media. After 48 h incubation period at 37°C in 5% CO2 atmosphere, the
cells were fixed by adding trichloroacetic acid. The plates were incubated at 4°C for 1-3 h.
The plates were gently washed five times with tap water (200 µL/well) to discard the
supernatant and were then air-dried for 12-24 h. The air-dried plates were stained with 0.2%
SRB solution for 20 min at room temperature. The unbound dye was then removed by gently
washing the plates five times with 1% acetic acid. The plates were then air-dried at room
temperature for 12-24 h. 200 µL of 10 mM trizma base was then added to each well. The
plates were then shaken on a gyratory shaker for 15-20 min to completely dissolve the
protein-bound dye. The optical density (O.D) of each well was measured
spectrophotometrically with an ELIZA microplate reader at 492 and 620 nm. The experiment
was repeated 3 times for each cell line. The percentage of growth inhibition was calculated
based on the following equation:

\[\text{OD} = \text{OD}_{492} - \text{OD}_{620} \] (1)
\[\text{OD}_{492} (\text{or OD}_{620}) = \text{OD}_{\text{cell}} - \text{OD}_{\text{control}} \] (2)

% Growth Inhibition = \[1 - (\text{OD}_{\text{TN}} - \text{OD}_c)\] x 100%

\[\text{OD}_{\text{cell}} : \text{OD values of wells containing cells} \]
\[\text{OD}_{\text{control}} : \text{OD values of wells without cells} \]
\[\text{OD}_{\text{TN}} : \text{OD values of sample calculated from (1) and (2)} \]
\[\text{OD}_c : \text{OD values of control calculated from (1) and (2)} \].

2.5 Statistical Analysis

All determinations for bioassay were carried out triplicates. Data were presented as the
mean ± SD analyzed by Skott-Knott test (P < 0.05) to examine the significant differences
between experimental data. A P < 0.05 was considered significant. All statistical tests were
carried out using SPSS package (version 16.0).

3. RESULTS AND DISCUSSION

3.1 Chemical investigation of methanolic fraction

Chemical investigation of methanolic fraction results in the isolation of two compounds,
rutin (1) and apigenin-7-O-β-D-glucopyranoside (2). The structures of these compounds
(Fig.1) were unambiguously determined by their chromatographic behaviors as well as
spectroscopic analysis via \(^1\)H-NMR and \(^13\)C-NMR. The spectra data obtained were in
agreement with those reported in literature (Fatemeh et al., 2006; Biruk et al., 2011; Tian, et
al., 2009; and Zhao et al., 2006)[7,12,8,9].
Fig. 1. Compounds isolated from methanolic fraction obtained from successive fractionation of defatted ethanolic leaf extract of P. multifida

3.2 Biological Activities

3.2.1 DPPH Free Radical Scavenging Activity

The model of scavenging of the stable DPPH radicals is a widely method to evaluate the antioxidant activity of the investigated sample in relatively short time compared with the other methods. The DPPH is a commercially available, stable organic nitrogen free radical with a deep purple color. In this assay, the purple chromogen (DPPH) radical is reduced by antioxidant/reducing compounds to the corresponding pale yellow hydrazine. The reducing ability of antioxidants towards DPPH can be measured at 517 nm (the maximum absorption of a stable DPPH radical).

The results of free radical scavenging properties of the crude ethanolic leaf extract, methanolic fraction and pure compounds compared to ascorbic acid are shown in Table 1. The crude ethanolic leaf extract expressed weak antioxidant activity with IC$_{50}$ = 89.84 ± 0.01 µg/mL whereas the methanolic fraction obtained from successive fractionation of defatted ethanolic leaf extract showed quite strong antioxidant activity with IC$_{50}$ = 21.90 ± 0.02 µg/mL as compared to that of ascorbic acid with IC$_{50}$ of 14.26 ± 1.81 µg/mL. Rutin (1) isolated from methanolic fraction showed potent antioxidant activity in a concentration-dependent manner with IC$_{50}$ = 37.70 ± 0.03 µg/mL (Fig. 2.)

Table 1. DPPH free radical scavenging activity (IC$_{50}$) of crude ethanolic extract, methanolic fraction from successive fractionation of defatted ethanolic extract and rutin from P. multifida leaves.

<table>
<thead>
<tr>
<th>Samples</th>
<th>IC$_{50}$ [µg/mL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude ethanolic extract</td>
<td>89.84 ± 0.01</td>
</tr>
<tr>
<td>Methanolic fraction</td>
<td>21.90 ± 0.02</td>
</tr>
<tr>
<td>Rutin</td>
<td>37.70 ± 0.03</td>
</tr>
<tr>
<td>Apigenin-7-O-β-D-glucopyranoside</td>
<td></td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>14.26 ± 1.81</td>
</tr>
</tbody>
</table>

(-) No inhibition; Value of IC$_{50}$ are expressed as mean ± SD
3.2.2 Anticancer Activity

Table 2 shows the results of in vitro cytotoxicity screening expressed in percentage of growth inhibition of crude ethanolic leaf extract and methanolic fraction of *P. multifida* against HeLa, NCI-H460 and MCF-7 cell lines at a single concentration (100 ppm) in accordance with the protocol of the Drug Evaluation Branch, National Cancer Institute [10] using the sulforhodamine B (SRB) method which has been widely used for drug-toxicity testing against different types of cancerous and non-cancerous cell lines [11].

The crude ethanolic extract showed potent cytotoxic activity against HeLa (35.26 ± 3.50 %) and NCI-H460 (50.54 ± 4.18 %) whereas the methanolic fraction obtained from successive fractionation of defatted ethanolic extract exhibited cytotoxic activity against all three types of cancer cell lines: HeLa (36.97 ± 2.15 %), NCI-H460 (53.74 ± 3.37 %) and MCF-7 (68.21 ± 2.47 %).

![Graph showing antioxidant activity of rutin (1) at different concentrations.](image)

Fig. 3 shows the cytotoxic activity of apigenin-7-O-β-D-glucopyranoside (2) isolated from methanolic fraction against MCF-7 cell line at various concentrations and (2) was found to exhibit high cytotoxic activity against the MCF-7 cell line with IC₅₀ = 22.62 ± 0.59 µg/mL.

<table>
<thead>
<tr>
<th>Plant extract</th>
<th>HeLa</th>
<th>NCI-H460</th>
<th>MCF-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude ethanolic extract</td>
<td>35.26 ± 3.50</td>
<td>50.54 ± 4.18</td>
<td>-</td>
</tr>
<tr>
<td>Methanolic fraction</td>
<td>36.97 ± 2.15</td>
<td>53.74 ± 3.37</td>
<td>68.21 ± 2.47</td>
</tr>
</tbody>
</table>

(-) No inhibition; Data are expressed as mean ± SD
P. multifida is widely distributed in the north and central of Vietnam and has been traditionally used by local people to cure various diseases including cancer, so it is necessary to examine the pharmacological characteristics of this plant. The data obtained from this research would be helpful in scientifically validating the traditional use of this plant species. This is the first investigation of focusing on the elucidation of components from methanolic extract of P. multifida growing in Vietnam and evaluation of biological activities of active compounds including antioxidant and anticancer activities. Two active compounds, rutin (1) and apigenin-7-O-β-D-glucopyranoside (2) were isolated from methanolic fraction obtained from successive fractionation of defatted ethanolic extract of P. multifida leaves. These compounds were subjected to the assay for antioxidant and anticancer activities.

Rutin (3,3',4',5,7-pentahydroxyflavone-3-rhamnoglucoside) has been evaluated for antioxidant activity by DPPH assay reported from many plant species and the IC_{50} values were found to be different. Examples are Cineraria abyssinica with IC_{50} = 3.53 μg/mL (Biruk et al., 2011)[12] and Osmanthus fragrans with IC_{50} = 10.3 μg/mL (Hung et al., 2012)[13]. Rutin was even used as a standard in evaluation of antioxidant potential of compounds from various medicinal plants and the IC_{50} values were also varied from 5.44 ± 0.21 μg/mL (Kalia et al., 2011)[14] to 22.96 ± 1.99 μg/mL (Carlos et al., 2011)[15] and 480 μg/mL (Vasagam et al., 2011)[16]. In this study, rutin was found with IC_{50} value = 37.70 ± 0.03 μg/mL which indicates that our findings seem to be consistent with other previous reports as mentioned above. It should be noted, however, that the different values of IC_{50} of rutin resulting from DPPH assay using different plant sources are due to the distribution of several factors such as differences in used solvents, concentration of DPPH working solutions, ratio between volumes of sample/reagent, duration of reaction, and equations for calculation of the results[17].

Rutin did not show any significant inhibitory activity against all three selected cancer cell lines, HeLa, NIC-H460, and MCF-7 whereas apigenin-7-O-β-D-glucopyranoside exhibited strong cytotoxicity against MCF-7 with IC_{50} = 22.62 ± 0.59 μg/mL. Presence of apigenin-7-O-β-D-glucopyranoside has been reported from some plant species like Gaillardia aristata (Salama et al., 2012)[18]; Achillea millefolium (Innocenti et al., 2007)[19]; and Platycodon grandiflorum (Jang et al., 2010)[20]. However, our findings are significantly different from previous reports of Salama et al., 2011 where apigenin-7-O-β-D-glucopyranoside did not show any significant cytotoxicity against MCF-7. It is too early to conclude the potential of apigenin-7-O-β-D-glucopyranoside in treatment of breast cancer; however, it is convincingly
believed that the therapeutic effects of *P. multifida* should be considered in supporting the treatment of breast cancer.

4. CONCLUSION

The results demonstrate that the crude ethanolic leaf extract of *P. multifida* has weak antioxidant activity and cytotoxic activity against two kinds of cancer cell lines: HeLa and NCI-H460 whereas methanolic fraction obtained from successive fractionation of defatted ethanolic extract exhibits quite strong antioxidant activity and cytotoxicity against three kinds of cancer cell lines: HeLa, NCI-H460 and MCF-7. Two purified compounds were isolated from methanolic fraction: Rutin (1) possess a potent antioxidant activity while apigenin-7-O-β-D-glucopyranoside has a strong anticancer activity against MCF-7 cell line.

ACKNOWLEDGEMENTS

This research was done with a strong support from International University, Vietnam National University, HCMC. The authors would like to express their sincere thanks to the International University, Vietnam National University, HCMC for its support in completing the project; and to the Institute of Chemical Technology, Vietnam Academy of Science and Technology of Ho Chi Minh City for providing the laboratory facilities used in the research.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

AUTHORS’ CONTRIBUTIONS

This work was carried out in collaboration between all authors. Authors HLS and THPT designed the study. Author HLS managed the literature searches, wrote the protocol, and the first draft of the manuscript, read and approved the final manuscript. Author THPT prepared and isolated pure compounds from the leaf extract performed the biological tests and statistical analysis.

CONSENT (WHERE EVER APPLICABLE)

Not applicable

ETHICAL APPROVAL (WHERE EVER APPLICABLE)

Not applicable

REFERENCES

