Short communication

Evaluation of field performance of insecticide-treated mosquito nets in north-western Burkina Faso

Valérie R. Louis¹, Athanase Badolo², Tabea Schröer¹, Wamdaogo M. Guelbeogo², Justin Tiendrebéogo³, Albrecht Jahn¹, Maurice Yé³, N’Falé Sagnon², Olaf Mueller¹*

¹Institute of Public Health, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany;
²Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 1487 Avenue de l'Oubritenga, 01 BP 2208 Ouagadougou, Burkina Faso;
³Centre de Recherche en Santé de Nouna (CRSN), Nouna, BP 02, Burkina Faso

ABSTRACT

Aims: The aim of the study was to evaluate the field performance of insecticide-treated mosquito nets (ITNs) in north-western Burkina Faso.

Study design: Cross-sectional survey.

Place and Duration: The study took place between September and November 2008 (end of rainy season) in rural north-western Burkina Faso.

Methodology: Standard WHO bioassays were performed on field-collected ITNs from three areas of different insecticide pressure: semi-urban Nouna town, three villages with cotton agriculture, and three villages without cotton agriculture. Data on age and washing frequency of ITNs was collected, and deltamethrin content was determined by HPLC.

Results: The mean age of field-collected ITNs was 2.1 years. The mosquito mortality rate (*Anopheles gambiae* s.l.) after 24 hours was 4% for the negative controls, 90% for the positive controls, and 73% for field-used ITNs. Differences in mosquito mortality between sub-areas disappeared after controlling for confounding variables.

Conclusion: This study demonstrates that under real life conditions, deltamethrin still shows some level of effectiveness despite ongoing insecticide pressure. However, deltamethrin resistance has been observed in other parts of the country and thus close surveillance of ITN efficacy is needed. More frequent replacement of ITNs is also recommended.

Keywords: ITN, LLIN, deltamethrin, synthetic pyrethroids, cotton culture, malaria control, *Anopheles gambiae*

* Tel.: +49 6221 565035; fax: +49 6221 565039.
E-mail address: olaf.mueller@urz.uni-heidelberg.de
1. INTRODUCTION

Insecticide-treated mosquito nets (ITNs) - in particular long-lasting insecticide treated nets (LLIN) - have become the dominating vector control tool in the field of malaria in Sub-Saharan Africa (SSA) (WHO 2009). Pyrethroid insecticides are the only class of insecticides approved for treating nets due to their high efficacy against Anopheles mosquitoes, low mammalian toxicity, and rapid breakdown in the environment (Mueller 2011; WHO 2006).

Mosquito resistance to pyrethroids has been reported from many countries of SSA (Santolamazza et al. 2008; Ranson et al. 2011; Abate et al. 2011). Resistance development has been associated with pyrethroid use in agriculture, in particular cotton production, but also with indoor residual spraying (IRS) programmes (Ranson et al. 2011; Chouaibou et al. 2008; Klinkenberg et al. 2008; Hargreaves et al. 2000; Maharaj et al. 2005). However, although an impact of pyrethroid resistance on malaria control programmes was shown in Southern Africa (Abilio et al. 2011), the public health impact of resistance development of malaria vectors against pyrethroids is currently not fully understood (Ranson et al. 2011). Against this background, we undertook an evaluation of ITN field performance in Burkina Faso.

2. METHODOLOGY

The study took place in the study area of the Centre de Recherche en Santé de Nouna (CRSN) in north-western Burkina Faso, an area highly endemic for malaria (Mueller et al. 2001); ITN household coverage was 28% in 2007 (Mueller et al. 2007). Three different sub-areas were selected (Figure): a) Nouna town (longitude: -3.86179, latitude: 12.72998), where insecticide use in households is known to be high (Okrah et al. 2002); b) The villages Bagala (-3.8258, 12.5956), Dara (-3.9217, 12.6264), and Koro (-3.60999, 12.80762), where cotton agriculture was intensively practiced; c) The villages Bourasso (-3.71253, 12.63369), Dina (-3.7142, 12.8167), and Kodougou (-3.60612, 12.51769), where cotton agriculture was not practiced.

Figure. Map of study localities in Kossi Province, Burkina Faso.
The study was undertaken between September and November 2008 using a similar evaluation methodology as in 2001 (Mueller et al. 2002). In brief, a total of ninety used ITNs were collected in households selected at random within each locality (30 per sub-area) using the register of the Health and Demographic Surveillance System managed by the CRSN. ITNs included in the study were only ‘PermaNet® 2.0’ (Vestergaard-Frandsen) of a maximum age of 5 years, as these were the type of nets distributed for research and program purposes in the area. A questionnaire was applied inquiring about ITN characteristics. Deltamethrin concentration on field-collected ITNs was determined using High Performance Liquid Chromatography with UV/Visible Diode Array Detection (HPLC-DAD) in cut outs (30 x 30 cm) sent to the Pesticides Research Department Walloon Agricultural Research Centre, Belgium. ITN efficacy was measured through standard bioassays with WHO cones, using progeny Anopheles gambiae s.l. collected from the respective study sub-areas with the endpoint of mortality 24 hours after three minute exposure to the net (WHOPEX 2005). A multivariate regression analysis was done using SAS 9.2 (SAS Institute Inc., Cary, NC, USA). Approval for the study was granted by the Ethical Committee of the Heidelberg University Medical School and the local Ethical Committee of Nouna in Burkina Faso.

3. RESULTS AND DISCUSSION

The characteristics of the field-used ITNs are shown in the table.

Table. Characteristics of field-used ITNs by sub-area in north-western Burkina Faso.

<table>
<thead>
<tr>
<th>ITNs</th>
<th>All</th>
<th>Urban area</th>
<th>Cotton area</th>
<th>No cotton area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>90</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Mean age in years (median)</td>
<td>2.1 (2.0)</td>
<td>2.6 (3.0)</td>
<td>1.9 (2.0)</td>
<td>1.9 (2.0)</td>
</tr>
<tr>
<td>[range]</td>
<td>[1m-5yr]</td>
<td>[1m-5yr]</td>
<td>[1m-5yr]</td>
<td>[1m-5yr]</td>
</tr>
<tr>
<td>Mean washes (median)</td>
<td>3.9 (3.0)</td>
<td>4.6 (3.5)</td>
<td>3.4 (3.0)</td>
<td>3.6 (3.0)</td>
</tr>
<tr>
<td>[range]</td>
<td>[0-20]</td>
<td>[0-20]</td>
<td>[0-10]</td>
<td>[0-20]</td>
</tr>
<tr>
<td>Deltamethrin content (g/kg)</td>
<td>0.51 ± 0.58</td>
<td>0.36 ± 0.54</td>
<td>0.59± 0.63</td>
<td>0.57± 0.56</td>
</tr>
<tr>
<td>± std [range]</td>
<td>[0-2.2]</td>
<td>[0-2.0]</td>
<td>[0-2.2]</td>
<td>[0-1.7]</td>
</tr>
<tr>
<td>Bioassays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number ITNs tested</td>
<td>77</td>
<td>24</td>
<td>28</td>
<td>25</td>
</tr>
<tr>
<td>Mosquito mortality after 24h</td>
<td>73%</td>
<td>64%</td>
<td>70%</td>
<td>85%</td>
</tr>
<tr>
<td>[range %]</td>
<td>[13-100%]</td>
<td>[13-92%]</td>
<td>[14-100%]</td>
<td>[59-100%]</td>
</tr>
</tbody>
</table>

* std= standard deviation; m=month; yr=year

ITNs were older in Nouna town than in villages and this was also reflected in differences in the number of washes and deltamethrin content. A total of 167 bioassays involving 5,882 adult mosquitoes were performed on positive and negative
controls and field-used ITNs. The mosquito mortality rate after 24 hours was 4% (57/1,477) for the negative controls, 90% (506/558) for the positive controls, and 73% (2,821/3,847) for field-used ITNs. Differences in mosquito mortality between sub-areas disappeared after controlling for confounding variables (ITN age, number of washes, and time since latest impregnation).

This study has examined the performance of a standard LLIN under real life conditions. If we discriminate between ITNs below and above 2 years of age, 24 hours mosquito mortality fulfills the WHO efficacy criteria (>80%) in the newer nets, but not in those above two years of age (83% vs 66%) (WHOPES 2005). Overall, agricultural and domestic use of insecticides including pyrethroids appeared not to have a large influence on the susceptibility of the main malaria vector *Anopheles gambiae* to pyrethroids. These findings are relevant for the national malaria control program in Burkina Faso which has just embarked on a major ITN distribution campaign with the aim of universal coverage (De Allegri et al.2011). Ongoing and representative surveillance of the susceptibility of local malaria vectors to the insecticides used for public health is needed.

4. CONCLUSION

This study demonstrates that under real life conditions, deltamethrin still shows some level of effectiveness despite ongoing insecticide pressure. However, deltamethrin resistance has been observed in other parts of the country and thus close surveillance of ITN efficacy is needed. More frequent replacement of ITNs is also recommended.

ACKNOWLEDGEMENTS

The study was supported by the German Science Foundation (DFG, SFB 544, project D4) at the Ruprecht-Karls-University Heidelberg. The authors would like to thank the entomological field teams of the CRSN, in particular Mr. Saïdou Ouédraogo, and of the CNRFP for their dedicated work during the implementation phase of this study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

AUTHORS’ CONTRIBUTIONS

VRL carried out the analysis, contributed to interpretation of the data and participated in writing the manuscript. AB, TS, WMG, JT, AJ, MY and NS contributed to the conception and the design of the study, the collection of the data and its interpretation, and drafting the manuscript. OM initiated the conception and design of the study, contributed to the interpretation of the data and wrote the manuscript. All authors read and approved the final manuscript.

ETHICAL APPROVAL

Approval for the study was granted by the Ethical Committee of the Heidelberg University Medical School and the local Ethical Committee of Nouna in Burkina Faso.

REFERENCES

area of extensive cotton cultivation in Northern Cameroon. Trop Med Int Health 13, 476-486.

