ABSTRACT

Background: Tuberculosis is one of the oldest known human diseases and is still one of the major causes of mortality. It ranks as the second most leading cause of death from a single infectious agent, after the human immunodeficiency virus (HIV).

Objective: The purpose of the study was to evaluate the efficacy of Fluorescence microscopy (FM) technique in order to determine sensitivity in detecting TB among HIV positive and HIV negative patients in poor resource country.

Methods: The study was a cross sectional, blind assessment on 50 suspected cases of TB in HIV positive and HIV negative patients using FM method against Zeihl Neelsen (ZN) staining method. Culture results were considered as gold standard.

Results: Of the total 50 specimens examined by ZN, FM and culture method 32%, 40% and 38% were found positive by ZN, FM and culture respectively. FM was found to be more sensitive to ZN on several aspects. The difference in their case detection rates was statistically significant ($\chi^2 = 35.3$, $p < 0.001$). In detecting overall patients for TB, FM method showed sensitivity of 90.0% (95% CI 68.3-98.5) over ZN method 75.0% (95% CI 50.9-91.3) with a kappa value of 0.83 ($p \leq 0.05$). FM method showed excellent sensitivity, sensitivity, PPV and NPV all with 100% (95% CI 48.0-100) among HIV-TB patients and an excellent kappa value of 1 ($p \leq 0.05$).

Conclusion: This study presented greater sensitivity of FM method over conventional ZN staining method in detecting TB among HIV positive patients. Fluorescence
microscopy can be widely used even in peripheral laboratories where culture facilities are not available.

Keyword: HIV-TB, Fluorescence microscopy, AFB staining

INTRODUCTION

Tuberculosis (TB) is one of the world’s deadliest diseases with one third of the world’s population infected with TB. In 2013, 9 million people around the world became sick with TB disease and around 1.5 million TB-related deaths worldwide. Globally in 2013, an estimated 480,000 people developed multidrug resistant TB (MDR-TB) [1, 2]. One-fourth of the deaths were associated with HIV infection and most of it in resource-limited settings (RLS) where the burden of HIV infection is high [3].

Guyana has one of the highest tuberculosis (TB) burdens in South America, and TB prevalence has steadily risen over the past two decades. Recent study on assessment of *Mycobacterium tuberculosis* from twelve Caribbean territories showed Guyana with higher proportion of drug resistant strains and relatively high TB-HIV co infections [4].

Accurate and prompt tuberculosis (TB) diagnosis is critical to disease control. Conventional culture method on solid medium for detection of TB and MDR-TB is time consuming and takes several months to report the results. Commercially available liquid culture systems, although having short turnaround time (TAT), are not accessible in settings where the need is greatest and are prohibitively expensive and require laboratories with advanced infrastructure [5, 6, 7]. Given the context of the emerging MDR-TB and extensively drug-resistant TB (XDR-TB) strains, there is an urgent need in resource-limited settings for a new, high-performing, inexpensive, and rapid diagnostic method for effective detection of TB and drug-resistant TB [8]. The recent advances in
molecular biology and a better understanding of the molecular basis of drug resistance in TB, have given us new tools for rapid diagnosis.

This study, therefore effort to evaluate the effectiveness of Fluorescent microscopy technique as against Ziehl Neelsen staining (ZN) technique in detection of acid-fast bacilli (AFB) among TB patients in Guyana.

METHODS

Study Design:
A total of 50 sputum samples were collected from the Georgetown Chest Clinic and the National Public Health Reference Laboratory during April 2013 to June 2013 using a simple random sample to assess the effectiveness of FM technique (which uses phenolic acridine orange florescent staining) as against ZN staining of sputum smears. Data was examined based on treatment history and results of HIV test (serologic) at the time of TB diagnosis. Patients suspected having of pulmonary tuberculosis were processed by the Petroff's method, and subjected to ZN staining, FM technique and culture on modified Lowenstein-Jensen media (gold standard) for detection of *Mycobacterium tuberculosis*.

Data Analysis:
All data analysis was performed using SPSS 21.0. Concordance between the two diagnostic methods and resistance profiles were determined by sensitivity, specificity, predictive values, and kappa statistics (with 95% confidence intervals). A kappa value of 0.70 is considered excellent. Culture method was used as the reference standard for all analysis. Significance of association was set at $p \leq 0.05$ and all probabilities were two-tailed.
RESULTS

A total of 50 samples were collected in this study, 20% (10) were tested positive for HIV and 80% (40) were tested HIV negative. Overall, the mean patient age was 38 (95% CI 35.2-42.2) with 52% (26) collected from male patients and 48 % (24) were collected from female patients (Table 1).

Table 1 shows the status of the patients in the study

<table>
<thead>
<tr>
<th>Age group</th>
<th>Female</th>
<th>Male</th>
<th>Male Female</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>2</td>
<td>2</td>
<td>4.0%</td>
</tr>
<tr>
<td>20-29</td>
<td>9</td>
<td>9</td>
<td>18.0%</td>
</tr>
<tr>
<td>30-39</td>
<td>19</td>
<td>19</td>
<td>38.0%</td>
</tr>
<tr>
<td>40-49</td>
<td>12</td>
<td>12</td>
<td>24.0%</td>
</tr>
<tr>
<td>>50</td>
<td>8</td>
<td>8</td>
<td>16.0%</td>
</tr>
</tbody>
</table>

HIV Positive 10 20% HIV Negative 40 80% P≤0.05

Of the total 50 specimens examined by ZN, FM and culture method, 32%, 40% and 38% were found positive by ZN, FM and culture respectively. FM was found to be more sensitive to ZN on several aspects. The difference in their case detection rates was statistically significant ($\chi^2 = 35.3$, p < 0.001). The sensitivities, specificities, predictive, and kappa values of the overall outcome are given in the Table 2. The ZN technique was less sensitive compared with the fluorescence technique as against gold standards. Sensitivity for ZN and FM techniques were 75% (95% CI 50.9-91.3) and 90% (95% CI 68.3-98.5) respectively were as the specificity for both techniques were recorded as 96.7% (95% CI 82.7-99.4) which was statistically significant (p≤0.05). A kappa value of 0.83 was recorded for the overall study.
Table 2
Performance of ZN and FM technique for detecting TB among HIV positive and HIV negative patients.

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>ZN</th>
<th>95% CI</th>
<th>FM</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td></td>
<td>75.0%</td>
<td>50.9 - 91.3</td>
<td>90.0</td>
<td>68.3 - 98.5</td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>96.7%</td>
<td>82.7 - 99.4</td>
<td>96.7</td>
<td>82.7 - 99.4</td>
</tr>
<tr>
<td>PPV</td>
<td></td>
<td>93.8%</td>
<td>69.7 - 99.0</td>
<td>94.7</td>
<td>73.9 - 99.1</td>
</tr>
<tr>
<td>NPV</td>
<td></td>
<td>85.3%</td>
<td>69.0 - 95.0</td>
<td>93.6</td>
<td>78.5 - 99.0</td>
</tr>
</tbody>
</table>

Kappa =0.83; p≤0.05

Comparison of ZN and FM technique among HIV negative patients recorded sensitivity of 85.7% (95% CI 57.2-97.8) with both methods and a specificity of 96.2% (95% CI 80.3-99.4) and 88.5% (95% CI 69.8%-97.4%) were recorded respectively (Table 3).

Kappa value was recorded as 0.83 with a statistical significance of p≤0.05.

Table 3. Performance of ZN and FM diagnostic methods for detecting TB among HIV negative patients.

<table>
<thead>
<tr>
<th>HIV Negative</th>
<th>ZN</th>
<th>95% CI</th>
<th>FM</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>85.7%</td>
<td>57.2-97.8</td>
<td>85.7%</td>
<td>57.2 - 97.8</td>
</tr>
<tr>
<td>Specificity</td>
<td>96.2%</td>
<td>80.3-99.4</td>
<td>88.5%</td>
<td>69.8 - 97.4</td>
</tr>
<tr>
<td>PPV</td>
<td>92.3%</td>
<td>63.9-98.7</td>
<td>80.0%</td>
<td>51.9 - 95.4</td>
</tr>
<tr>
<td>NPV</td>
<td>92.6%</td>
<td>75.7-98.9</td>
<td>92.0%</td>
<td>73.9 - 98.8</td>
</tr>
</tbody>
</table>

kappa=0.83; p≤0.05

Table 4 shows comparison of ZN and FM technique among HIV positive patients. FM technique recorded a sensitivity of 100% (95% CI 48.0-100) and only 60% (95% CI 15.4 -93.5) sensitivity was recorded with ZN method among HIV positive group. Specificity
and PPV was recorded 100% with both methods. An excellent kappa value of 10 with statistically significance ($p \leq 0.05$) was recorded.

Table 4. Performance of ZN and FM diagnostic methods for detecting TB among HIV positive patients.

<table>
<thead>
<tr>
<th>HIV Positive</th>
<th>ZN 95% CI</th>
<th>FM 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>60.0% 15.4 - 93.5</td>
<td>100% 48.0 - 100</td>
</tr>
<tr>
<td>Specificity</td>
<td>100% 48.0 - 100</td>
<td>100% 48.0 - 100</td>
</tr>
<tr>
<td>PPV</td>
<td>100% 30.5 - 100</td>
<td>100% 48.0 - 100</td>
</tr>
<tr>
<td>NPV</td>
<td>71.4% 29.3 - 95.5</td>
<td>100% 48.0 - 100</td>
</tr>
</tbody>
</table>

kappa=10; $p \leq 0.05$

DISCUSSION

The AFB staining method is the mainstay in the diagnosis of TB infection in resource-limited settings. It is a cheap, simple, and rapid method but smear microscopy has a low specificity and variable sensitivity [9]. Culture based diagnosis is considered as gold standard method over sputum smear include an increased sensitivity. However, available conventional tests such as MGIT and BACTEC are simply not feasible for developing nations because of their high costs and equipment requirements. In a study done in Guyana for diagnosis of MDR-TB (Multi drug resistant- TB) among HIV patients by the NRA and Hain LPA showed acceptable correlation and that HIV infection does not affect drug susceptibility testing [10]. These methods are expensive and difficult to carry in this setting.

In HIV-positive patients, excellent agreement rates (100% sensitivity and Kappa value 1) were observed with FM technique. FM proved to be more reliable than the ZN
Method in many studies with a major advantage that it enabled the detection of positive
smears, which were overlooked with ZN stained smears containing low-density bacilli
[11]. The use of FM significantly increases the diagnostic value of the smear,
particularly where there are low-density bacilli which may escape detection on ZN
stained smears. However, to be considered smear positive a specimen needs to contain
approximately 10^5 mycobacteria per milliliter. The sensitivity of sputum microscopy in
HIV infection ranges from 43 to 51 per cent, and in many resource-limited settings with
high rates of co-infection, the sensitivity may be much lower [12, 13].

Methods that improve speed or sensitivity include fluorescence microscopy and
alternative specimen processing methods, such as concentration, bleach sedimentation
and same-day sputum collection (so-called front loading) strategies. Any procedure for
digestion or liquefaction followed by centrifugation, prolonged gravity sedimentation, or
filtration increases sensitivity by 13 to 33 per cent over direct microscopy, when culture
is used as the reference standard [14, 15, 16, 17].

Co-infection with HIV leads to many challenges in both the diagnosis and treatment of
tuberculosis. With increase in rates of drug resistant tuberculosis, including multi-drug
(MDR-TB) and extensively drug resistant TB (XDR-TB) mortality has increased. Sputum
smear microscopy in HIV-infected patients are not highly sensitive therefore newer
diagnostic tests are urgently required that are cheaper, sensitive, specific and easy to
use in remote and resource-constrained settings. The treatment is very important in
prevention of TB and/or HIV which can only be done with a very effective diagnostic
tool. Thus an effective diagnostic tool is very crucial in diagnosing TB in early stage and
in HIV patients to reduce mortality and spread of infection.
CONCLUSIONS:
The study concludes that the FM method is quite economical in terms of both time and expense and it is recommended for laboratories handling large number of sputum specimens. FM method is also more reliable than ZN in diagnosing TB among HIV patients.

REFERENCES

